Kuo - Lung Wu A modified mountain clustering algorithm
نویسنده
چکیده
In this paper, we modify the mountain method and then create a modified mountain clustering algorithm. The proposed algorithm can automatically estimate the parameters in the modified mountain function in accordance with the structure of the data set based on the correlation self-comparison method. This algorithm can also estimate the number of clusters based on the proposed validity index. As a clustering tool to a grouped data set, the modified mountain algorithm becomes a new unsupervised approximate clustering method. Some examples are presented to demonstrate this algorithm’s simplicity and effectiveness and the computational complexity is also analyzed.
منابع مشابه
A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملMountain c-regressions method
Article history: Received 2 September 2008 Received in revised form 13 June 2009 Accepted 16 June 2009
متن کاملA Modified Mountain Clustering Algorithm based on Hill Valley Function
A modified mountain clustering algorithm based on the hill valley function is proposed. Firstly, the mountain function is constructed on the data space, with estimating the parameter by a correlation self-comparison method, and database’s mountain function values are computed. Secondly, the hill valley function is introduced to partition the data distributed on each peak. If the hill valley fun...
متن کاملDetection of lung cancer using CT images based on novel PSO clustering
Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...
متن کامل